
Planning and Monitoring Solar Array Operations on the ISS

Sudhakar Y. Reddy
1111, Michael J. Iatauro

1111, Elif Kürklü
1111, Matthew E. Boyce

2
, Jeremy D. Frank

3
,

and Ari K. Jónsson
4

1
Perot Systems Government Services,

2
MCT, Inc.,

3
NASA Ames Research Center,

4
Reykjavik University

NASA Ames Research Center, Moffet Field, CA 94035

{Sudhakar.Y.Reddy, Michael.J.Iatauro, Elif.Kurklu, Matthew.E.Boyce, Jeremy.D.Frank}@nasa.gov, Ari@ru.is

Abstract

 Managing the International Space Station (ISS) solar arrays
requires flight controllers to constantly balance multiple
complex constraints against power needs. The complexity
not only impacts planning activities, but has an even more
acute effect on real-time operations, in particular when
handling unexpected events or changes in operations plans.
The Solar Array Constraint Engine (SACE) has been
developed to assist the flight controllers with the task of
planning and executing solar array operations in a safe and
effective manner. SACE is built on top of the EUROPA2
model-based planning system, using its constraint
management and automated planning capabilities to reason
about the different constraints, find optimal array modes and
orientations subject to these constraints and user-
configurable solution preferences, and automatically
generate solar array operations plans. In addition to
operations planning, SACE provides situational awareness,
what-if analysis, and optimization functionality.

Introduction

As the International Space Station (ISS) nears completion,
new solar arrays have been added to improve the power
availability to meet the demands of the new science and
crew modules. At the completion of assembly, the ISS will
have eight solar arrays that can be oriented in two
dimensions. This is in contrast to a much simpler initial
configuration on the ISS, where a single solar panel had
only one degree of freedom and was largely out of harm’s
way. The new solar panels add a great deal of complexity
to ISS operations planning and monitoring. The solar
arrays are designed to automatically track the sun, as the
station revolves around the earth, to maximize the power
production. However, normal ISS operations such as water
dumps, visiting spacecraft (Space Shuttle, Progress and
Soyuz), and extra vehicular activities (EVA) put complex
constraints that ultimately define safe array configurations,
due to structural load limits, contamination concerns, and
thermal impacts, which in turn impacts power generation.
Consider, for example, a visit by a Progress spacecraft,
which uses thrusters to maneuver around the station. The
load from the thrusters on the solar panels is minimized if
the arrays are oriented with their edge towards the
Progress. In general, due to the risks involved in human
flight operations, the operations are very conservative,

requiring extensive precautions and contingency planning,
which in turn add more constraints to the problem.

ISS Mission Operations

ISS Mission Operations are complex and involve long
preparatory lead times for planning and validating, real-
time operations, which can involve nominal and off-
nominal situations, upfront and real-time coordination
among multiple groups, and more. Operations are con-
trolled by experts in mission control, organized into teams
that manage certain aspects or subsystems of the station.
 The Power, Heating, and Lighting Controllers
(PHALCON) are responsible for planning and monitoring
the power, heating, and lighting systems for safe
operations. This involves constantly balancing multiple
complex constraints against power needs and power
production capability. The power system itself consists of
the solar arrays, the joints that orient the arrays, the
batteries, the charging systems, the power loads, etc.
PHALCONs interact closely with other groups, such as the
Power Resource Officers (PROs), attitude control experts,
and, due to the key role that power plays, eventually with
all other groups. The interaction of power control and
attitude control is a good example of the complexity of
these operations. Even during routine operations, the
attitude (roll, pitch, and yaw) of the ISS needs to be
changed for docking and undocking, debris avoidance, and
re-boosting for orbit correction. PHALCONs must closely
coordinate their plans with the attitude control team,
because the attitude change is accomplished through firing
one or more thrusters attached to the ISS or the docked
vehicles. These actions put loads on the solar arrays and
subject them to contamination if they are not properly
oriented. Attitude and other configuration changes also
impact how arrays are best oriented for power generation,
which in turn might impact power availability.
 Currently, PHALCONs take about four weeks of
calendar time to manually produce an ISS solar array
operations plan for a typical four week planning horizon, a
process requiring manual transfer of information between
different teams. Furthermore, certain constraints can only
be checked when a plan is fairly complete, requiring
multiple revisions to the plan before a valid one that meets
all the different constraints can be produced.

AI Planning in ISS Mission Control

At a first glance, it might appear that optimization and
automated planning in this domain would be
straightforward and easily mapped to standard
representation and reasoning approaches. However, the
complexity of the problem, mission operations culture, and
the nature of AI technology raised a number of interesting
and hard technical challenges.
 Flight planners and controllers use certified processes
and procedures in determining the optimal, but safe,
orientations of solar arrays. The processes define
“imperative algorithms” for safe operations of the solar
panels. One of the technical challenges is in mapping the
implicit elements of these imperative algorithms into
declarative representations used by AI planning systems.
Another challenge is in translating the nonlinear
continuous constraints into a representation that can be
efficiently reasoned by EUROPA2’s discrete variable and
value-based constraint reasoning engine. The very
important, but often overlooked, challenge is in supporting
a complex requirements analysis and development process
for producing flight-certified software, which inevitably
involved changes in the problem being solved and
subsequent changes to the solution methods.
 The objective of this article is to introduce a very real
and interesting problem to the planning community, to
describe how AI planning and constraint reasoning
technology is being used to solve this real problem, and to
give insight into what it takes to work with customers to
develop complex applications of planning technology. The
paper is organized as follows: first, we define the problem;
next we present the approach taken in the tool we
developed; then we describe the functionality and interface
of the tool; and finally we end with some concluding
remarks and notes about future work.

The Problem

As previously stated, ISS will have eight solar arrays, each
of them mounted on a rotary joint called the Beta Gimbal
Assembly (BGA). Four each of the BGAs are mounted on
a Solar Alpha Rotary Joint (SARJ), one each on the
starboard and the port sides of the ISS. Therefore, each
solar array has two degrees of rotational freedom, though
some degrees of freedom are constrained by the shared
SARJs. Further, the rotary joints can be in different modes
e.g. auto-tracking the sun, parked in a specific position,
latched (for BGA) or locked (for SARJ). The objective of
the Solar Array Constraint Engine (SACE) is to determine
the appropriate modes and the orientations for the different
joints for safe operation under different ISS configurations
and events. This capability is used both for analysis of
current or future ISS configurations, and for producing
long-term array plans. The decision variables are the
orientations and modes of the different joints, and the
control variables are those that determine the
configuration. The latter include the attitude (roll, pitch,

and yaw), combination of thrusters firing, the specific
event – docking, undocking, attitude hold, water dump, etc.
It should be noted that constraints may only be applicable
in some joint assignments of the control variables (e.g.
array loads conditioned on spacecraft docking).

Solar Array Constraints

Solar array constraints fall into the following categories:
power, loading (array and SARJ are treated separately),
contamination and longeron shadowing. The power
availability due to any array will be the maximum if it
automatically tracks the sun, but this is not always a safe
mode in which to operate. If power availability drops too
low, some ISS subsystems must be shut off. As described
earlier, the attitude of the station needs to be changed
periodically to account for various events by firing a
combination of different thrusters, which in turn imposes
structural loads on the solar arrays as well as the joints,
especially the SARJs. Further, the thruster plumes and
water dumps can cause contamination of the arrays,
reducing their power generation.
 Additionally, differential shading of longerons, which
are structural elements that keep the array blankets in
tension, put stresses on the arrays, with the magnitude of
the stresses depending on a complex set of calculations.
An array’s longerons can be shadowed by its own blanket
or those of a neighboring array, the amount of shadowing
depending on the solar beta (the elevation of the sun
relative to the orbit plane of the ISS), and the orientations
of the adjacent arrays. The same factors also impact the
power generation by the solar arrays; to improve power,
the arrays should not be shadowed, but to keep the arrays
from shadowing each other or the longerons, they are no
longer in an orientation for producing maximum power.
 The various constraints map array configurations into
three color-coded zones – red when the constraint is
violated and the orientation is considered an infeasible
solution or a keep out zone, green when the operating zone
is feasible, and yellow an intermediate zone where one can
operate if there is no green zone solution available.

Orientation and Mode Optimization

For a given configuration of the ISS, the main problem is
to find orientations and modes for the different arrays that
keep them in a safe operating zone and at the same time
maximize the power availability. One way to solve this
problem is to pose it as a (nonlinear) mathematical
programming problem (or NLP). The ISS certified
operations procedures, however, define this problem in
terms of solution preferences, rather than as a classical
NLP. The solution preference for orientation
determination can be paraphrased as follows:
In finding a solution, first avoid all orientations that
cause red power, then avoid red loads, next avoid red
longeron shadowing, then avoid yellow loads, after
that avoid red environment, and then find a location
that maximizes power.

 Another imperative procedure encodes the solution
preferences for determining the mode of the solar arrays,
whether to autotrack, park, lock, or latch the various joints.
The modes cannot be independently determined for each
solar array, because of the SARJ shared by multiple arrays.
For example, a part of the preference procedure can be
paraphrased as follows:
In determining a mode, prefer autotrack to park, and
park to latch or lock. If the array loads are in the red
zone, latch the BGA, and if the SARJ loads are in the
red zone, lock the SARJ. If the current orientations
are safe, but if there is a possibility of the loads on
any joint getting into danger zone during
autotracking, avoid autotracking that joint. Further,
if there is a possibility of the contamination
constraints getting into the danger zone during
autotracking, avoid autotracking, expect if operating
in a contingency mode.

 The solution preferences for mode determination are
more complex because of the interdependence of
BGA and SARJ mode determinations. Further, restrictions
on modes for certain joints and preferences between modes
for other joints could be specified by the user at run-time,
based on the health of the different BGAs and SARJs.

Solar Array Planning

The planning problem is to build a solar array plan to
change array modes and orientations, given planned
evolution of configurations and constraints in time. The
evolution of configurations is defined by an attitude
timeline (ATL) and a thruster timeline (TRTL). The
events on these timelines can have fixed or flexible start
and/or end times. Each configuration is associated with
contingency configuration variable values as well.
Together, the main and contingency station configurations
(C, CA) define the context for when the different sets of
load, contamination, etc. constraints (X) are active. The
ATL defines the flexible time interval over which each
configuration is active.
 The problem state (S) is composed of the array
orientations (α, β), joint modes (m), and the station
configurations (C, CA). The possible set of actions (A)
include the actions to change the mode (park, lock, latch,
autotrack) of the different BGAs and SARJs, and the turn
or slew actions to change the orientation of the arrays.
Both the state and the action have an extent in time,
defined by the start and end times (ts, te); one or both these
times could be flexible. The goal of the planning problem
is to find a set of actions, states, and their extents that are
consistent, do not violate the constraints (X), and optimal
with respect to the solution preferences.
 Additional constraints that govern planning include the
maximum rates at which the different joints can be slewed
or turned, and the minimum durations on time intervals
between switching modes or orientations to account for
minimum time required for authorizing and issuing
commands and monitoring their completion. Further
objectives during planning include the minimization of the

turns of the rotary joints, which is preferred to maximizing
power availability once sufficient power is available to
meet critical needs (power is in the green zone). Another
consideration for slewing actions is to minimize the change
in direction of rotation of the joints.
 In summary, each action has complex constraints, in
particular for a duration that depends on the context. This
is made more complex by the impact that context
dependency has on local instance solutions, as they serve
to further restrain possible solutions. The problem is also
non-directional, as a globally more optimal solution can be
obtained by making an early action less optimal. The
planning problem is NP complete, and given the size of the
problem at hand, it is impractical to obtain a globally
optimal solution through exhaustive search.

The Approach

Several guiding principles have driven the choice of the
approach to address the problem. First, the PHALCONs
wanted to gain confidence in the approach, so the
application had to be developed in stages – first to address
monitoring and optimization for a single configuration, and
in the next phase planning over a time horizon. Second,
we needed to follow already certified procedures as much
as possible. We chose a constraint-management based
approach for monitoring the arrays during real-time execu-
tion, - to ensure that they are operating in a safe manner
with respect to the different context-dependent constraints.
We used an exhaustive optimization approach, which uses
a specially designed cost function that faithfully encodes
the certified solution preferences to find optimal modes
and orientations for any specific configuration.
 Finally, our planning approach uses a model-based
planning system to model the domain states and actions.
However, instead of solving the problem as a global
optimization problem over the entire time horizon, we
chose a greedy approach that used an optimizer to find a
locally-optimal solution at each stage of the time evolution
of the plan. Even though the solution is not globally-
optimal, it follows the approach currently used by the
PHALCONs, and thus makes it easier to gain their
confidence in the solutions produced by the tool.

EUROPA2: Constraint-based Framework

SACE uses the Extensible Universal Remote Operations
Planning Architecture (EUROPA2) framework for
optimization and automated planning. This model-based
planning system accepts a declarative description of a class
of planning problems consisting of a list of timelines
(concurrent threads of a plan), a list of states that may hold
on each timeline over an interval, and compatibilities
describing the relationships that must hold between
timelines in order for a plan to be valid. The EUROPA2
framework provides an interface that allows programmers
to build customized planners that meet the needs of their
applications. EUROPA2 incorporates special purpose

modules for reasoning about time, general constraints,
managing timelines, managing applicability of
compatibilities, and managing search control heuristics.
For a detailed description of the EUROPA2 framework and
the underlying concepts, please refer to (Frank and Jónsson
2003).
 EUROPA2 is highly reconfigurable and easily adaptable
to different domains, and it has been employed in a variety
of NASA missions (e.g. MAPGEN for the Mars
Exploration Rovers (Bresina et al. 2005) MSLICE and PSI
for upcoming Mars missions (Aghevli et al., 2006)) and
many technology demonstrations. The same capabilities
made it suitable for managing the complexities of
managing the ISS Solar Arrays. For example:
1. Conditional applicability of constraints. EUROPA2's
language represents such constraints naturally, whether
the configuration is determined from telemetry or
specified by the operator.

2. Aggregation of constraint classes. Array configurations
safety is aggregated using a "least-safe" rule over all
applicable constraints. These rules are naturally
expressed using constraints to capture the implications.

3. Support for flight controller’s desire to selectively
ignore certain constraints. Again, EUROPA2's language
can be used to incorporate flight-controller specified
desire to ignore or incorporate a class of constraints.

4. Evolution of the rules. Over the two years the
application has been developed, the set of states and
rules has changed considerably. The model-based
nature of EUROPA2 has led to less development of new
code compared to application-specific methodologies,
since EUROPA2's rules language is flexible enough to
incorporate many of the desired changes.

5. Evolution of functionality. Again, over the two years
the application has been developed, the functions of the
tool have expanded. Initially all that was desired was
the ability to assess orientations, then planning was
desired, then the ability to handle complex adjacent
array shadowing constraints, etc. The modularity of
EUROPA2's code base and API allowed incremental
expansion of the application.

Representation of Solar Array Constraints

As each solar array has two degrees of freedom, defined by
the SARJ angle (α) and BGA angle (β), the natural
representation for modeling the different load,
contamination, and power constraints is as a 2-dimensional
table, with rows representing different values of α and
columns representing different values of β. SACE
discretizes the domain for the α and β angles into single
degree increments. Each cell in the table represents the
numerical value of the constraint, for example, structural
load. As discussed earlier, the constraint values are
categorized into three zones, and the numerical ranges over
which a constraint is considered red, yellow or green is
configurable. EUROPA2’s constraint representation makes
it convenient to represent and reason about these tabular
constraints. SACE allows the user to restrict the domains

for the various angles; this required special care when the
domain extends over the 360

o
 to 0

o
 boundary.

 Detailed analysis models have been developed by ISS
engineers to estimate the loads, contamination, and power
availability in different orientations, for different
configurations of the ISS. These analyses are too
computationally intensive to run on-line during planning or
monitoring; however, they can be performed off-line over
a known set of configurations. Such tables are constructed
off-line and used in SACE. As some of the constraint data
is generated at a coarser granularity, SACE uses numerical
interpolation to find the constraint values for the
intermediate values of α and β.
 One of the tougher challenges was translating the
imperative representation of the mode determination
procedure into a declarative representation. Especially
because of the interdependence of the BGA and SARJ
modes, this required splitting the procedure into several
declarative constraints, together called the lock-latch
constraint set.
 As discussed earlier, differential shadowing of the
longerons causes structural stresses that can be catastrophic
to the solar array. At any given point in time, one can
assess the time to criticality by a complex function of the
time in shadow for the four different longerons that are part
of a given solar array. During real-time monitoring, these
are easy to compute based on the telemetry feeds.
However, during planning or optimization, the calculation
of a longeron constraint requires the precise information
about the starting state of the shadowing timers, and in
addition relies on a detailed simulation of the shadowing
for a specific configuration and specific modes and
orientations of the arrays, as the station revolves around the
earth. Therefore, unlike the load and contamination
constraints, the longeron shadowing constraints cannot be
evaluated ahead of time for use during planning.

Orientation and Mode Optimization

The orientation and mode optimization problem has been
posed as an unconstrained optimization problem. Both the
constraints and the solution preferences have been encoded
into a cost function (L) that is minimized. The
optimization problems for the starboard and port sides of
the station are independent. On each side, however, the
shared SARJ means that the individual arrays cannot be
independently optimized. In an early formulation, when
adjacent array shadowing was not considered, the overall
cost function could be split into n independent functions,
where n is the number of BGAs sharing a SARJ, and is
either 2 or 4 depending on the stage of assembly. As tool
requirements evolved, the need to account for adjacent
array shadowing caused interdependence between the
optimal solutions for the arrays.
 The cost function for each array is a function of the
SARJ and BGA angles, and can be represented as a
weighted sum of other cost functions:

),(),(

),(),(),(),(

i

p

ipii

i

d

idi

m

imi

c

icii

LwLw

LwLwLwL

βαβα

βαβαβαβα

θ
θ ++

++=

 The component cost functions refer to the color cost, L
c

(due to different constraints being in the red, yellow, or
green zones), the mode cost, L

m
 (due to modes of the BGA

and the SARJ), the distance cost, L
d
 (due to distance

between current orientation of arrays and the solution), the
direction change cost, L

θ
 (due to change in direction of

trajectory of arrays), and power cost, L
p
 (due to

incremental differences in power within a constrained
power zone). For example, the color cost encodes the
preference discussed in the problem formulation section.
We modeled this as a simple linear program and solved for
the color costs that encode these preferences. The weights
in the above equation are set such that the user-desired
preference order of first optimizing using the constraint
color zones, next optimizing the modes, then minimizing
the distance, etc. is maintained.
 The second stage of the algorithm for determining the
optimal orientation is fairly simple. The cost for each
orientation (α, β1, β2 …) is calculated, for each α, as the
sum of the costs for the best βi with respect to the
corresponding Li.

The optimal orientation is then the orientation that
minimizes the overall cost, L. With adjacent blanket
shadowing, however, the power produced depends on the
orientations of the pair of arrays. So, the power cost,

pL ,
cannot be independently estimated for each array.
Therefore, the power cost computation is moved to this
second-stage of the algorithm. Further, the second stage
needs to exhaustively search the (α, β1, β2, …) space to
determine the optimal orientation.
 Once an optimal orientation is determined, we then
determine the modes for the different joints. The mode
costs used in the cost function of the first stage are
optimistic lower-bound estimates. Therefore, the full
mode determination preference described in the problem
formulation section is used to determine the mode.

Automated Solar Array Plan Generation

SACE represents the states and actions, described in the
problem formulation, on timelines in EUROPA2. In
EUROPA2, there is no representative difference between
states and actions, but for this discussion, the
configurations, array orientations, and joint modes are
treated as states. The actions either change the mode
(Park, Latch, Lock, Autotrack actions) or change the
orientation (Turn/Slew action). The basic planning
constraints are: (a) array orientation does not violate
feasibility constraints on load, contamination, etc.; (b)
array modes are feasible for chosen orientations; (c) joints
are in position before parking, latching, or locking; and (d)
actions meet minimum duration requirements for
commanding and execution.
 SACE uses the optimizer discussed in the previous
section to address the first two constraints, and uses the
EUROPA2 planner to address the latter two constraints. In
essence, it treats the global optimization problem during

solar array planning as simply a sequence of individual-
configuration optimization problems. Such a simplifying
assumption can lead SACE into a situation where it cannot
find a feasible solution for a down-stream configuration
even when one exists, because of a greedy choice for an
earlier configuration. The means of handling this situation
is described in the following paragraphs.
 In the initial phase of the three-phase planning process,
information from the ATL and the TRTL are represented
as tokens on respective timelines. The event tokens on
these timelines are then translated into one or more
configuration tokens on a different timeline, based on rules
in the planning domain model. The SACE planner then
iterates over the configuration tokens, finding the optimal
orientation and mode using the local optimizer. Each BGA
and SARJ is represented by a timeline as well, and the
optimal solution is translated into state tokens (to represent
orientation and mode) and action tokens (to change mode
or orientation) on these timelines. The constraint
management system in EUROPA2 restricts the domain of
orientations the down-stream configurations as the solution
for a given configuration is specified on the timeline.
 After each configuration token is optimized, the planner
validates the resulting orientations and modes generated
thus far to detect any conflicts. Problems may arise due to
insufficient duration to turn an array from one orientation
to the next in between two configurations, insufficient
duration for lock/unlock a SARJ array and/or latch/unlatch
a BGA, insufficient duration for commanding a turn action,
etc. In case an inconsistency is detected, the planner
retracts the solution for the previous configuration, merges
the two configurations, and repeats the process. To
elaborate, suppose configurations are treated in order
C1…Ck. If an inconsistency is detected after optimizing
configuration Ci, the planner retracts the solution for
configurations Ci and Ci-1, merges the configurations, and
re-optimizes. In our experience, most conflicts are due to
insufficient duration for actions and can be resolved by
merging configurations.
 Once the entire configuration timeline is processed
through the optimizer, the resulting BGA and SARJ
timelines are processed by the EUROPA2 planner based on
the domain model that defines the latter two constraints in
the constraint list described above. The final plan,
represented by the BGA and SARJ timelines, is post-
processed first to determine feasibility with respect to the
longeron shadowing constraint, and next to calculate the
detailed power availability along the timeline.

The Tool

The SACE tool has been implemented to assist the ISS
PHALCONs with the task of planning and executing solar
array operations in a safe and effective manner. To
address the three major functions of the PHALCONs,
SACE provides a “telemetry view” for situational
awareness, a “sandbox view” for what-if analysis and
optimization, and a “plan view” for automated planning.

LL ++=),(),(),,,(*

22

*

1121 βαβαββα LLL

To rapidly demonstrate value, on par with and beyond the
other tools developed for PHALCONs, SACE has been
developed in stages, using a spiral development process.
First, the situational awareness piece was developed; this
required the representation of the “table” constraints in the
EUROPA2 framework, as well as translating some of the
imperative procedures currently used by the PHALCONs
into declarative constraints or systems of constraints. Next
the sandbox capability was added, whereby the user can
evaluate arbitrary orientations in any given configuration
in terms of the various constraints and power availability,
or to automatically find an optimal orientation subject to
user restrictions on the search space. Finally, the
automated planning piece was developed, which required
modeling the arrays in the NDDL planning domain
description language supported by EUROPA2, and the
implementation of a custom planner.
 Throughout this process, as is common in software
development, requirements were continually refined, and
new requirements were added. For example, metal
shavings were discovered in one of the SARJs, requiring
that the SARJ be turned as little as possible and be parked
or locked otherwise. Due to the constraint- and model-
based framework used in SACE, this was fairly straight
forward to model, and required minor changes to the user
interface. The major reason for the success of this effort is
the close coordination between the PHALCONs and the
development team through twice-weekly teleconferences
in addition to periodic visits to Mission Control to observe
the PHALCONs in action.

Architecture and User Interface

SACE is a two-tier application built on top of EUROPA2
model-based planning system. The back-end provides the
constraint propagation, optimization, and planning
services, front-end manages the interaction with the user.
 Both the telemetry and the sandbox use the same
interface components with a few operational differences.
In the telemetry view, SACE receives the state information
(configuration, orientation, and mode) from the ISS
telemetry stream through the ISP interface, whereas in the

sandbox mode, user can input the configuration and other
state information. Time-sensitive constraints like the
longeron shadowing constraint are computed in real time
on the telemetry side, and are taken to be the worst-case
over an orbit in the sandbox. Additionally, the sandbox
has an interface for invoking the optimizer.
 The main window, which has a common form for the
telemetry and sandbox, is shown in Figure 1, and has three
different areas. The top left area shows the orientations,
modes, and over-all summary of the constraint status for
the BGAs and SARJs. The top right area shows the
configuration variables, which determine the context for
the different constraints. SACE reads the constraint
information given in the constraint definition files, uses the
configuration information in this region to determine the
set of applicable constraints, and then evaluates each
constraint, providing an indication of whether the state of
that constraint is unknown, safe, caution or danger. Per-
constraint state information is displayed at the bottom of
the main sandbox window.
 Contextual information, providing an indication of
constraint states for ranges of angles other than the
currently chosen ones. The aggregate constraint state for
all ranges of angles can be displayed in two primary forms:
a map view displays a two dimensional map, showing the
aggregate constraint state for any combination of α and β;
a ring view displays a set of concentric rings, showing the
constraint state of each individual constraint as well as the
aggregate state for all β values given an α and all α values
given a β value for each BGA. The map view is shown in
Figure 2, and uses color-codling to display the status of the
constraints and uses intensity to show power availability.
 The planning component of SACE allows the user to
load an ATL and a TRTL from files and automatically
determines a solar array plan. The resulting plan is dis-
played as interactive timelines, as shown in Figure 3. The
user can review the plan in this window, or dig deeper by
loading each configuration into the sandbox by clicking on
the desired configuration. The user can also edit the plan.
Possible editing options include moving ATL elements
along the timeline or adjusting their duration and restrict-

Figure 1. The main window of the SACE Sandbox shows the configuration variables on the top right, the orientations and

modes on the top left and a summary view of the constraint status at the bottom.

ing the orientations and modes for the different joints.
 Among the elements in the planning window are the
SARJ and BGA timelines, showing the modes (including
orientations) and turns. Other timelines show the status of
the longeron shadowing constraint and the power
availability. SACE interacts with a trajectory and power
modeling tool called SOLAR for calculating the power
availability, the direction of the sun, and the paths taken by
the arrays while tracking the sun.

Into Mission Control

Getting automated optimization and planning technology
into human spaceflight mission operations is a major
achievement. The challenge is to identify a need for the
technology in mission control, and then provide significant
value that makes up for the technical risk of bringing in

new software, especially one based on AI. In our case, a
key application was identified by the ISS mission
controllers, for which the automated planning technology
seemed to be well suited. The first step was then to build a
prototype and demonstrate the capabilities offered by the
technology. After that, came a phase of requirements
specification and refinements; this in turn led to a decision
to commit to the development of the tool.
 The development of such a tool is far from simple; even
if no new methods need to be developed. Requirements
change over time, and constraints that initially were
assumed to be simple table constraints turned into complex
calculations. During this time, the tool must also be usable
by customers, so as to enable evaluation and feedback.

Certification process: The strictest challenge to getting
software into mission control is the certification process.
For all mission control applications, this boils down to
development and testing documentation and a formal
approval by responsible parties. Testing out all possible
cases and modes is critical to ensure correctness. This is
impossible for many software applications, but truly
insurmountable for AI-based applications. As a result, the
test cases had to be developed as being exemplary, rather
than fully covering. The formal approval process is based
on the customer team evaluating the tool, running all test
cases, as well as being part of the development process to
ensure adherence to rules about coding.

Related Work

The problem addressed by SACE is quite different from
other problems addressed by automated planning. A few
automated planning applications have tackled power
management for spacecraft, but none have done it at the
level of complexity that SACE does. The first AI system
to manage a spacecraft was the Remote Agent (Muscettola,
et.al 1998). Part of the agent was the Remote Agent
planning system (Jónsson, et.al 2000), which automatically
generated plans to achieve operations goals, taking a
simple power model into account.

Figure 2. The map view in SACE shows the status of the

constraints as a color-coded map, where the Y-axis is α

and X-axis is β. The four maps correspond to the four

active solar arrays in this configuration.

Figure 3. The SACE planning window shows the timelines for the ATL, TRTL, the configurations, and the different

SARJs and BGAs, among other things.

 The potential of automated on-board power management
has been demonstrated for a satellite with signal processing
payloads (Shriver, et. al., 2002). The satellite's power
system is considerably simpler than that of the ISS, and the
spacecraft attitude (and thus power generation) is fixed;
however, the onboard system can choose data processing
options of differing power consumption for different
expected science return. Automated power management
was used for NASA Goddard's ST-5 mission (Stanley, et.
al., 2005). In this work, the power management system ran
in a fully automated mode in Mission Control Center, but
its role was limited to characterizing the performance of
the ST-5 power system, and notifying mission planners of
future constraint violations in the mission schedule due to
changed expected power availability or consumption.
 The ASPEN model-based planning system from NASA's
Jet Propulsion Laboratory was used in a demonstration of
automated scheduling of a lower-fidelity model of the ISS
power system (Rabideau, 2008). However, this model
lacked the highly detailed, context-dependent models
required to manage the ISS, and did not manage live
updates from the ISS telemetry stream.
 Mixed-initiative planning systems have been used in
spacecraft operations before. The first was the MAPGEN
system, used to build plans for Mars Exploration Rover
mission (Bresina et.al., 2005). MAPGEN was also based
on the EUROPA planning framework and assisted users
with building efficient and safe rover plans each day. The
tool, however, did not have a fully integrated power plan-
ning element, but rather relied on a simplified power model
to do planning and then checked the plan against a more
complex calculation. A more recent AI tool in mission
operations is the MEXAR2 mixed-initiative planning tool,
which is used to plan downlink operations for the Mars
Express spacecraft (Cesta et.al, 2007). It does not handle
any power planning, but rather focuses on data storage.

Concluding Remarks

We have described the challenging task of automated
planning and optimization of ISS solar array operations.
The resulting mission operations tool, called SACE, will
reduce the time it takes to produce solar array plans from
weeks to hours by providing an end-to-end solution that
starts with a timeline of ISS attitudes and events and
automatically produces a solar array plan and a timeline of
power availability. The tool also supports real-time
monitoring and responses to unexpected events or changes.
SACE is currently undergoing testing for flight
certification by the Mission Operations Directorate. Once
deployed, SACE will be the first optimization and
automated planning tool to be used for human spaceflight.
 The optimizer in SACE was carefully crafted to take
advantage of the independence of parts of the optimization
problem. During the course of the development of SACE
and station construction, some of these independence
assumptions were invalidated, requiring the modification
of the algorithm. This has dramatically increased the time

for optimization of a single configuration, which in turn
has increased the planning time to a few hours from about
half-an-hour in our first implementations. We plan on
exploring approaches to improve the optimization speed.
 During planning, SACE solves for a locally optimal
solution for each configuration along the timeline. It is
possible that a locally optimal solution for one
configuration can restrict the space for future
configurations so much that a feasible solution cannot be
found. Currently, SACE merges locally optimal
configurations and makes limited adjustments so as to
expand the feasible space. However, such a solution will
likely be sub-optimal. Standard search techniques will not
work, due to the time it takes to evaluate constraints for
each search node, but we plan on exploring variations of
backtracking approaches and intelligent search heuristics to
address this potential problem.

References

Rabideau, G. 2008. Space Habitat Power Management
with an Autonomous Scheduling System, In Proc. 9th
International Symposium on Artificial Intelligence,
Robotics and Automation for Space (i-SAIRAS 2008).
Shriver, P., Gokhale, M., Briles, S., Kang, D., Cai, M.,
McCabe, K., Crago, S., and Suh, J. 2002. A Power Aware,
Satellite-Based Parallel Signal Processing Scheme. Power
Aware Computing, Kluwer Academic Publishers, Norwell,
MA, 243-259.
Stanley, J., Shendock, R., Witt, K., and Mandl, D. 2005. A
Model-Based Approach to Controlling the ST-5
Constellation Lights Out Using the GMSEC Message Bus
and Simulink. In Proc. Intl. Conf. Software Engineering
Research and Practice.
Frank, J., and Jónsson, A. 2003. Constraint-based Attribute
and Interval Planning. Constraints 8(4): 339-364.
Muscettola, N., Nayak, P., Pell, B., and Williams, B.
Remote agent: To boldly go where no AI system has gone
before. Artificial Intelligence, 103(1/2), August 1998
Jónsson, A., Morris, P., Muscettola, N., Rajan, K., and
Smith, B. Planning in interplanetary space: Theory and
practice. In Proceedings of the Fifth International
Conference on Artificial Intelligence Planning and
Scheduling, 2000.
Cesta, A., Cortellessa, G., Denis, M., Donati, A., Fratini,
S., Oddi, A., Policella, N., Rabenau, E. and Schulster, J.
MEXAR2: AI Solves Mission Planner Problems. In IEEE
Intelligent Systems, 22(4):12-19, 2007
Bresina, J., Jónsson, A., Morris, P., and Rajan, K. “Activity
Planning for Mars Exploration Rovers", in Proceedings of
15th International Conference on Automated Planning and
Scheduling (ICAPS), 2005.
A. Aghevli, A. Bachmann, J. Bresina, K. Greene, B.
Kanefsky, J. Kurien, M. McCurdy, P. Morris, G. Pyrzak,
C. Ratterman, A. Vera, S. Wragg Planning Applications
for Three Mars Missions with Ensemble. Proceedings of
the 5

th
 International Workshop on Planning and Scheduling

for Space, 2006.

